
Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

http://sispress.org/journals/josetap

ISSN: 2377-3316

http://dx.doi.org/10.21174/josetap.v1i1.31

10

Toward a Timetabling Qt Application

Modernization

Yassir Gourram, Samir Mbarki*, Zineb Gotti and Sara Gotti

MISC laboratory, Faculty of Science, Ibn Tofail University, BP 133, Kenitra, Morroco

Abstract-- Nowadays, we note that there is a big change in technologies. To track these changes, the evolution of

software development practices is required. MDE provides modernization techniques that can quickly follow these

changes. We adopt this approach in order to modernize the legacy Qt timetabling application user interfaces. We

conducted an automatic reverse engineering of Qt interfaces in order to have as output RIA interfaces. This automatic

process reproduces user interfaces with a modern representation and retains data related to graphical components namely

properties, position and actions. To illustrate this approach, let us consider FET as our legacy Qt timetabling application.

Keywords— Architecture Driven Modernization (ADM); Knowledge Discovery Model (KDM); Qt Graphical User

Interface Meta-model (QGUIM); Concrete Syntax Tree Meta-model (CSTM); Rich Internet Application (RIA).

I. INTRODUCTION

Once the software world becomes a primary need

for companies, new techniques appear under several

ways or representations with approaches varying in

several areas. To take advantage of the benefits

introduced by trendy platforms, the OMG group has

introduced several approaches such as MDA in 2000

[1] and ADM [5] in 2007 to build and promote

standards that can be applied in reverse engineering

process.

The technologies of these approaches based on

meta-modeling and transformations of models can help

to optimize systems evaluations costs by automating

modernization process of systems. Reverse

Engineering Technologies can analyze legacy software

system, identify its widgets and their interconnection,

reproduce it or reproduce anything based on the

extracted information, and create a representation at a

higher level of abstraction or in another form [12].

In this paper, we applied modernization

technologies for migrating from a Qt application to

RIA application by implementing a re-engineering

process based on three phases: The reverse

engineering, the restructuration and the forward

engineering. An approaching tool is proposed, in this

paper, for modernizing FET application; it allows

extracting domain classes according to CSTM meta-

model, and semantic graphical information, then

analysing extracted information to change them into a

higher level of abstraction as a KDM model. This tool

provides a modernization process which starts from a

timetabling application based on Qt API, as source

platform, in order to produce a modern timetabling

application based on RIA as a target platform.

It was difficult to define mapping between source

platform layout and target platform layout, so we

implement an algorithm aiming at calculating the

absolute position of each widget.

The rest of this paper is organized as follows:

Section 2 is dedicated to the related work. In section 3,

we explain the modernization process which contains

three phases: Reverse engineering, Restructuring and

Forward engineering. Section 4 defines the used

technologies. Finally, section 5 concludes the work and

presents perspectives.

II. RELATED WORK

Currently, software modernization approach

becomes a necessity for creating new business value

from legacy applications, there is a great research effort

has been dedicated to the reverse engineering and a

number of proposals have been published. The most

relevant are [12], [13], [14], [15], [16]. The work

proposed by Javier et al [13], focuses on text to model

transformation as the essential task in modernization in

order to extract models from GPL source code that

conforms to a grammar. They proposed a * Corresponding author can be contacted via the journal website.

http://dx.doi.org/10.21174/josetap.v1i1.31

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

11

transformation language whose source domain is the

grammar of the source code and whose target domain

is the model by manipulating the CST of the source

code. R. Pérez-Castillo et al [14] introduce a reverse

engineering tool called ANDRIU for migrating

Java/swing applications to the android platform. This

tool uses two OMG standards; AST for representing

data extracted from java swing code in reverse

engineering phase and KDM Platform Independent

Model. In [15], Roberto Rodriguez-Echeverria et al

presented a solution for the modernization of JavaEE

applications. The authors have set up a systematic

process for WA-to-RIA modernization by applying

MDE principles, techniques and tools. The process

generates a RIA client from the legacy WA

presentation and navigation layers and its

corresponding service-oriented connection layer with

the underlying business logic at server side. In [16],

Yan Liang presented a tool for reverse engineering

C++ source code. This tool uses CDT API (to extract

artefacts from C++ source code without supporting the

user interfaces) and Eclipse EMF (to facilitate the

design and realization of the target model). Mbarki, S.

et al [12] present a tool for reverse engineering

named FlexMigration allowing automatic reverse

engineering of Swing GUI to obtain a RIA GUI. This

tool is based on three phases; the reverse engineering

phase which uses the jdt API for parsing the java

Swing code in order to fill in an AST and Graphical

User Interface models, the restructuring phase that

represents a model transformation for generating an

abstract KDM model and the forward phase which

includes the elaboration of the target model (FlexM)

and a similar Flex Graphical User Interface.

III. MODERNIZATION PROCESS

The first phase of modernization process is based

on Text-To-Model transformation that uses parsing

techniques to retrieve information collected from

HEADERS, SOURCES and UIS files using algorithms

designed for data extraction; graphical components,

widget position and related signals and slots used for

communication between components. Then, a model

transformation is launched to automate the generating

process of RIA application model. Our approach

includes reverse engineering techniques and OMG

standards: ADM, KDM and MDA.

FET timetabling application [11] is perfectly good

to be used in our case study as input for our approach.

Basically, FET is open source free timetabling software

for automatically generating schools timetables. It is

licensed under the GNU Affero General Public License

version 3 or later. FET application is written

in C++ using the Qt cross-platform application

framework. Each Qt application is based on three main

files: The headers, sources and forms files.

The UI (forms) files define a set of graphical

components and their properties. As regards source

files, they contain all the definitions of the class which

declaration is in the headers.

 Our approach is based on the analysis of each of

these files in order to have an abstract presentation of

the original interface and then rebuild it in a rich target

platform. Here in figure 1 the diagram detailing our

process of C ++ / Qt applications modernization [2]:

Figure 1. Modernization process

A. Reverse Engineering Phase

This section is dedicated to the extraction and

representation of information. It defines the first phase

of reengineering following ADM process. It is about

the parsing technique, consisting in extracting input

data information from Qt files and representing them in

the form of a model. This is the solution we

approached to perform the transformation text to

model.

The definitions of Qt classes are distributed in three

separate files; a header .h file, .cpp source file and .ui

file. In order to extract the necessary information from

the three Qt files, we used two open source parsers, an

XML parser to parse the .ui file that has the form of

xml, and another C++ parser to analyze at the same

time header and source files which conform to a

grammar definition.

Before we explain the parsing algorithm, it should

be noted that two PSM meta-models have been

developed. The first focuses on the structural aspect of

header and source files (CSTM). The second is

particularly devoted to the presentation layer of the

application (QGUIM).

As depicted in figure 1, the first parsing relies on

UIs component extraction from .ui files, the second one

relies on the concrete syntax tree nodes of .cpp and .h

files for defining SLOT function definition related to

each graphical component.

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

12

1) Extracting Graphical Components

The SAX API is originally specific to the Java

programming language that is used to read a portion or

all of an XML document. It could then be adopted by

most of the current programming languages [18]. This

API allows us visiting the input UI file, element by

element (tag, comment, text), when it is encountered,

in order to get a QGUI model. Our sax parser in reality

consists in 2 parsing processes: the first is parsing UI

files to get QGUI model that contain all interface

granularities. The second is calculating all absolute

position of component existing in layouts.

a) First UI Parsing

This reverse engineering converts all UI file

element to get model according to QGUI meta-model

(see fig.2). The sax algorithm (see table 1) processes

component, container and classifies them in respective

position in a temporary QGUI model.

This first level SAX parser is a handler class that

can create several types of events. It must be defined as

needed for our parsing treatment. The main methods to

answer are: EndElement, characters, startDocument,

endDocument, startElement. StartElement method is an

important method; it is called upon detection of a start

component and containers tags. It is called after

startDocument method launching; it manages UI object

creation when meeting a start tag of a new item. This

generated model have an important cons, it generates

component without any position information as X and

Y, Height or Width. These properties have an

important influence on the destination model, that’s

why we create a second parsing to calculate these

informations.

b) Second UI parsing

The goal of this treatment is to save the traceability

of the absolute position calculated from the first source

model to the last target model, it will save multiple

inconsistency between the different types of layout in

various target platforms, for example, a Qt Form layout

has no similar in android. Thus, we can easily

manipulate our target model with the absolute position

in multiple platforms as desktop, web or mobile.

This parsing is a collection of small algorithms that

may calculate dimensions of our widgets; these

algorithms are based on geometry elements

information. Here (see fig.3) we take an example to

explain our algorithm.

Figure 2. QGUI meta-model

Table 1. A part of first parsing algorithm

First Parsing algorithm

If (currentTag = "width") then

Create "<property Name <- "width" Value="

End if

If (CurrentTag = "property" and AttributesNumber

(0) = ("spacing")) then

Create "spacing = ""

currentpropertylayout<- true

End if

If (CurrentTag = "property" and AttributesNumber

(0) = ("leftMargin")) then

Create" leftMargin = ""

currentpropertylayout<- true

End if

If (CurrentTag = "widget") then

If (AttributesNumber (0) = ("QSpinBox")) then

Currentspinbox<-true

Create "<widget xsi:type="guiqt1:QSpinBox"

Name=“AttributesNumber(1)"

Else

Create "<widget xsi:type = "guiqt1:

AttributesNumber(0)" Name="AttributesNumber(1)"

End if

End if

If (CurrentTag = "layout") then

Create "<layout xsi:type =

"guiqt1:AttributesNumber(0)"

Name ="AttributesNumber(1) "

layoutopened<- true

End if

Figure 3. GUI case study

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

13

This window represents a QDialog that contains a

vertical layout container which contains also four small

horizontal layouts, each of these layouts has two or

three components. The only geometry information here

is the QDialog properties that give X, Y, Width and

Height. In the first phase of the algorithm, we try to

calculate the X,Y of each layout by calculating how

many layouts are in to extract the absolute position of

all components and containers on them. Thus, the

algorithm tries to divide in equal values the height of

our layouts and calculate the width.

Layoutheight =(Qdialogheight–(layoutnumber +1)*

spacing) / layoutnumber (1)

Layoutwidth = QdialogWidth – 2 * spacing (2)

With these values we can easily extract layout’s X,

Y position.

X1 = X0 + spacing (3)

Y1 = Y0 + spacing (4)

Yn = Yn-1 + layoutheight + spacing n>1 (5)

The complete equations considerate different

various layouts parameters, in our case we

choose spacing as example, in fact, for each

layout, parameters are not completely similar

(see table 2).

After calculating layout position, the program starts

with analysing each layout, how many components are

in and starts calculating the absolute position of each

element. The absolute position equation for LB2 and

CB1:

Componentwidth=

(layoutwidth(NumberOfElementInLayout + 1)*

spacing)/ NumberOfElementInLayout

(6)

X2 = X1 +spacing (7)

Xn = Xn-1 + Componentwidth+ spacing X>2 (8)

Y4 = layoutheight/2 – Height LB2 /2 + Y3 (9)

The component height in our case has a default

value. In case of layout imbrications, the algorithm

above applies recursively. The figure bellow (see fig.4)

shows an UI file as entry of our parsing algorithm:

Table 2. Differences between layouts properties

 QHBox

Layout

QVBox

Layout

QGrid

Layout

QForm

Layout

layoutName * * * *

layoutLeftMargi

n
* * * *

layoutTopMargi

n
* * * *

layoutRightMar

gin
* * * *

layoutBottomM

argin
* * * *

layoutSpacing * *

layoutStretch * *

layoutSizeConst

raint
* * * *

layoutRowStretc

h
 *

layoutColumnSt

retch
 *

layoutHorizontal

Spacing
 * *

layoutVerticalSp

acing
 * *

layoutRowMini

mumHeight
 *

layoutColumnM

inimumHeight
 *

layoutFieldGro

wthPolicy
 *

layoutRowWrap

Policy
 *

layoutLabelAlig

nmentHorizontal
 *

layoutLabelAlig

nmentVertical
 *

layoutFormAlig

nmentHorizontal
 *

layoutFormAlig

nmentVertical
 *

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

14

Figure 4. UI file entry

The result of the parsing algorithm is explained as

follows (see fig.5):

Figure 5. Generated model with the second parsing phase

2) Extracting Concrete Syntax Tree Nodes

As shown in fig.1, the execution of model to text

transformation generates a target model conforming to

CSTM meta-model representing the syntax tree of the

source code. The based technique for model extraction

is to use a parser that provides parsing and model

generation. Regarding the choice of C++ open source

parser, we opted for the CDT parser, here [3] we found

the reasons for choosing CDT parser to extract

information from both header and source files in order

to represent SLOT function definitions.

The text to model transformation using CDT parser

uses node visiting technique, it starts by creating the

syntax tree of header file, then visiting node by node

for filling in the instance model that conforms to

CSTM meta-model. The root node is TranslationUnit,

it represents a compilable unit of source code. The

TranslationUnit node contains Includedirectives and

Declarations, these Declarations contain Declaration-

Specifier: an element for representing class type nodes

if it is a CompositeTypeSpecifier. They also contain

Declarators for representing field type and function

type node.

The figures below describe the mapping between a

part of AddRoomForm header (see fig.6) code and the

model instance result (see fig.7) of the parsing

according to a CSTM meta-model (see fig.8).

Figure 6. Legacy source code

Figure 7. Model instance

Figure 8. CSTM meta-model

Now, for each CPPfunction (SLOT) we should get

its definition by parsing the source file (.cpp) and

visiting the functionDefinitons. The function definition

is located in a block called CompoundStatement which

covers inside a set of statements. A statement can be

either a FunctionCallExpression if it is a call of

function, a BinaryExpression if it is an assignment, or

an IfStatement.

We define a parsing recursive function algorithm

that analyzes the source file and gets statements (see

table 3).

The first part of the figure below (see fig.9) shows

the body definition code of addRoom SLOT and the

second part represents the result of the relative function

definition node parsing.

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

15

Table 3. CDT parsing algorithm

Visiting blockstatements(Body) function

Algorithm

Begin

for all statement inbody do

if(statement isFunctionCallExpression) then

FunctionCallExpression.Create()

add(FunctionCallExpression, body)

end if

if(statement isBinaryExpression) then

BinaryExpression.Create()

add(BinaryExpression, body)

end if

if(statement isIfStatement) then

IfStatement.Create()

forall condition

instatement.getConditionExpression() do

if(condition isFunctionCallExpression) then

functionCallExpressionCondition.create()

end if

if(condition isBinaryExpression) then

BinaryExpressionCondition.create()

end if

end for

body statement.getThenStatetment()

Visiting blockstatements(body)

Body statement.getElseStatetment()

Visiting blockstatements(body)

add(IfStatement, body)

end if

end for

end

In order to get dependencies between Qt windows,

our parser has used a navigability algorithm that

searches in each SLOT function if there is a

FunctionCallExpression whose name is show() or

exec() that can launch a window from another one.

B. Restructuring Phase

This is the important phase of the modernization

process. It is aiming at deriving an enriched conceptual

technology-independent specification of the legacy

system in a knowledge model KDM from the

information stored inside the models generated on the

previous phase.

Figure 9. CSTM model

Figure 10. KDM architecture [6]

KDM is an OMG standard for representing

information retrieved by reverse engineering phase [7].

The KDM architecture is divided into four abstraction

layers: Infrastructure layer, Program elements layer,

Resource layer and Abstractions layer (see fig.10).

Each layer is dedicated to a particular application view

point. In this paper, we are interested in only two

layers: infrastructure and resource. These layers allow

representing user interfaces, data and source code.

We analysed the KDM OMG standard and it’s

meta-model to select the packages needed in this

phase. We select ui package and kdm package. The ui

package is used to represent the user interfaces

structure and interactions among them. The kdm

package is the infrastructure for the ui package. In

order to link the graphical element represented in

QGUI model with there graphical properties, we

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

16

incorporated the Attribute (tag-value) element in the

kdm package. As shown in figure 1, after obtaining

CST and QGUI models from Qt files, we define a set

of mapping rules that transform these models to a kdm

model. This mapping distinguishes two concerns: ui

elements mapping and SLOT mapping. The first

mapping allows transforming graphical containers and

components into KDMUI element.

The containers (e.g. QDialog) are mapped to

Screens. Concerning AbstructButton element

(QpushButton, QRadioButton, QCheckBox) are

transformed into UIRessource element. The

DisplayWidget elements (QLabel) are transformed into

UIField element. The InputWidget elements

(QTextEdit, QSpinBox, QComboBox, QLineEdit) are

transformed into UIField.

The QGUI model contains graphical component

descriptions (such as text, size, position …); these

descriptions are stored in a property element which will

be converted to Attribute.

The second mapping starts when a QGUI element

is used to interact with another tier of system. These

interactions are handled by SIGNALs and SLOTs.

SIGNALs are mapped into UIEvent and SLOTs are

mapped into UIAction. A SLOT represents a CST

FunctionDefinition that is connected to a graphical

component if a SIGNAL is emitted. Each CST

statement defined inside a SLOT function is mapped as

follows:

FunctionCallExpression to CallableUnit

IFStatetment to ActionElement

BinaryExpression to ActionElement

Figure 11. Connecting a SIGNAL to a SLOT

Figure 11 represents how to connect a SIGNAL

emitted from a graphical component to a SLOT

function. Figure 12 shows the body definition of help

SLOT inside AddRoomForm class.

Figure 12. SLOT body definition

The two mappings generate as a result a KDM

model. Figure 13 shows a part of transformation

execution result.

Figure 13. KDMUI model

Table 4. KDM to FlexM transformation algorithm

KDM to Flex transformation algorithm

inputkdm : KDMui

output flex : FLEXM

begin

 for all e in kdm.UiResource

 map Uiresource2FelxModel (e)

 end for

end

mapping Uiresource2FelxModel (res:

UiResource):FlexModel

begin

for all e.typein res.UiElement

if e.typeis Screen

map screen2DataGroup(e)

end if

end for

end

mapping screen2DataGroup(s:Screen): BorderContainer

begin

if s.typeis Frame

forall e in s.UiElement

if e.typeis UiResource

if e.typeis Qcombobox

map UiResource2combobox (e)

end if

if e.typeis QSpinbox

map UiResource2combobox (e)

end if

if e.typeis QPushButton

map UiResource2Button (e)

end if

end if

if e.typeis Uifield

if e.typeis QLAbel

map Uifield2label (e)

end if

if e.typeis QlineEdit

map Uifield2TextInput(e)

end if

end if

end for

end if

end

mapping atrribute2Properties(A:Attribute): Property

begin

end

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

17

Concerning the dependency mapping between two

windows, the model transformation has defined a

navigability mapping that use UIFlow elements added

to UIAction to define the relationship between the two

windows.

C. Forward Phase

Forward engineering is a process of moving from

high-level abstractions [10]; it involves using

transformational techniques to automatically obtain

source code according to the new platform or

programming language.

Once the information retrieved from the user

interface is integrated into the KDM repository, it can

be used for migrating the KDM UI model to RIA

model with Flex technology.

In this step we focused on the mapping of graphical

components and their properties (Text, width, Position

...) according to mapping rules. In the transformation

algorithm (see table 4), we have collected all the

properties related to each graphical component into

Flex model.

The figure 14 depicts a part of the model obtained

from KDM to Flex model transformation.

Figure 14. Flex model result

To keep the same appearance of the legacy

timetabling interfaces, we made a model to text

transformation that take as input the generated Flex

model. The figures below show two graphical

interfaces. Figure 15 represents the Qt timetabling

interface for adding rooms that will be transformed into

a similar Flex user interface as shown in figure 16.

Figure 15. Legacy AddRoom interface

Figure 16. Modern Addroom Flex interface

IV. TECHNOLOGIES USED

This tool has been developed for existing

timetabling application based on Qt / C++. It is based

on five key technologies. The first technology is the

CDT [4] parser which provides techniques of how to

inspect a concrete syntax tree and how to walk its

nodes. The second one is developed using SAX API, it

works by iterating over the XML file for extracting

graphical components, their properties and their

interconnection.

The CDT and SAX parser are used for developing

the first phase of modernization process.

The third technology is EMF (Eclipse Modeling

Framework), "It represents a modeling framework and

code generation facility for building tools and

applications based on other structured data models" [9].

It can build meta-models according to the meta-model

ECORE. Then, from these meta-models, we build

models that conform to their syntax.

And as a fourth technology used for mapping

between the models, we used the QVTo framework [8].

Finally the fifth technology is based on Acceleo

"Acceleo is a pragmatic implementation of the Object

Management Group (OMG) MOF Model to Text

Language (MTL) standard" [17], in order to generate

the code with riche interface.

Journal of Software Engineering: Theories and Practices 1 (1): 10-18, 2016

18

We worked on 60% of application classes, among

classes that we have not processed, are the treatment

classes as "timeconstraint", "generate" ... In the other

side the SAX algorithm has limitation when a graphical

component or a container within the layout has a

specific height and width e.g. “QtabWidget,

QListWidget …”

V. CONCLUSION AND FUTURE WORK

Ultimately, the final result of our approach shows

that the designed solution can be used to reproduce

modern and rich interfaces from Qt timetabling

applications, while keeping the arrangement of

different graphical components and related signals and

slots associated to each component. To achieve this, we

relied on MDE principles. Our contribution bases on a

set of transformations, text-to-model transformation

(parsing), model-to-model transformation and model-

to-text transformation. This involves a series of meta-

models (data structures) and transformations

(algorithms).To switch from one representation to

another, Meta-models are considered to be a useful

formalism to represent the gained knowledge in the

reverse engineering process. QGUIM and CSTM as

well as KDM and FlexM meta-models are given as the

key of our migration approach.

However, the transformation algorithms do not treat

all cases of layouts. The advantage we have is that our

tool is extensible; eventually we can

modernize a solution for the migration of different

graphical components and different layouts. Also we

can modernize the entire Qt application, not only GUIS

but also the business rules. The advantage is that it is

designed to be extended to accept other target

platforms for migration.

REFERENCES

[1] Blanc, Xavier, and Olivier Salvatori. MDA en action:
Ingénierie logicielle guidée par les modèles. Editions Eyrolles,

2011.

[2] Chikofsky, Elliot J., and James H. Cross. "Reverse engineering

and design recovery: A taxonomy." Software, IEEE 7, no. 1

(1990): 13-17. DOI= http://dx.doi.org/10.1109/52.43044

[3] Piatov, Danila, Andrea Janes, Alberto Sillitti, and Giancarlo

Succi. "Using the Eclipse C/C++ development tooling as a

robust, fully functional, actively maintained, open source C++
parser." In Open Source Systems: Long-Term Sustainability,

pp. 399-399. Springer Berlin Heidelberg, 2012. DOI=

http://dx.doi.org/10.1007/978-3-642-33442-9_45

[4] CDT, Eclipse C/C++ development tools, viewed December
2014. https://eclipse.org/cdt.

[5] OMG, Architecture-Driven Modernization, viewed January

2014. http://adm.omg.org.

[6] OMG, Architecture-Driven Modernization: Knowledge

Discovery Meta-Model, v1.1, viewed February 2014.
http://www.omg.org/spec/KDM/1.1/PDF/2009.

[7] OMG, Architecture-Driven Modernization Standards Roadmap,

viewed March 2014.

http://adm.omg.org/ADMTF%20Roadmap.pdf.

[8] OMG, QVT. Meta Object Facility 2.0,
Query/View/Transformation Specification, viewed June 2014.

http://www.omg.org/spec/QVT/1.0/PDF/.

[9] EMF, Eclipse Modeling Framework, viewed September 2014.

http://eclipse.org/modeling/emf/.

[10] Wagner, Christian. Model-Driven Software Migration: A
Methodology: Reengineering, Recovery and Modernization of

Legacy Systems. Springer Science & Business Media, 2014.

DOI= http://dx.doi.org/10.1007/978-3-658-05270-6

[11] FET, Free Timetabling Software, viewed September 2014.
http://lalescu.ro/liviu/fet/.

[12] Mbarki, S., Laaz, N., Gotti, S., Gotti, Z., “ADM-Based

Migration from JAVA Swing to RIA Applications”, In 5th

International Conference on Information Systems and
Technologies (ICIST), Istanbul, Turkey, march 21 - 23, 2015.

[13] Izquierdo, Javier Luis Cánovas, and Jesus Garcia Molina.

"Extracting models from source code in software

modernization." Software & Systems Modeling 13, no. 2
(2014): 713-734. DOI= http://dx.doi.org/10.1007/s10270-012-

0270-z

[14] Pérez-Castillo, Ricardo, De Guzmán, I.G.R., Gómez-Cornejo,

R., Fernandez-Ropero, M., Piattini, M., “ANDRIU. A
Technique for Migrating Graphical User Interfaces to

Android”, In: Twenty-Fifth International Conference on

Software Engineering and Knowledge Engineering (SEKE), pp.
516-519, Boston. 2013.

[15] Rodriguez-Echverria, R., Conejero, J.M., Clemente, P.J.,

Preciado, J.C., Sánchez-Figueroa, F., “Modernization of

Legacy Web Applications into Rich Internet Applications”, In:
Andreas Harth and Nora Koch, editors, Current Trends in Web

Engineering - 11th International Conference on Web

Engineering - ICWE 2011 Workshops, Cyprus, 2011.

[16] Liang, Yan. "On the Exploration of Lightweight Reverse
Engineering Tool Development for C++ Programs." In Proc.

International Conference on Software Engineering Research

and Practice. 2011.

[17] Acceleo, viewed September 2014. https://eclipse.org/acceleo/.

[18] SAX 2.0: The Simple API for XML, viewed September 2014.
http://www.saxproject.org/.

http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1007/978-3-642-33442-9_45
http://dx.doi.org/10.1007/978-3-658-05270-6
http://dx.doi.org/10.1007/s10270-012-0270-z
http://dx.doi.org/10.1007/s10270-012-0270-z

